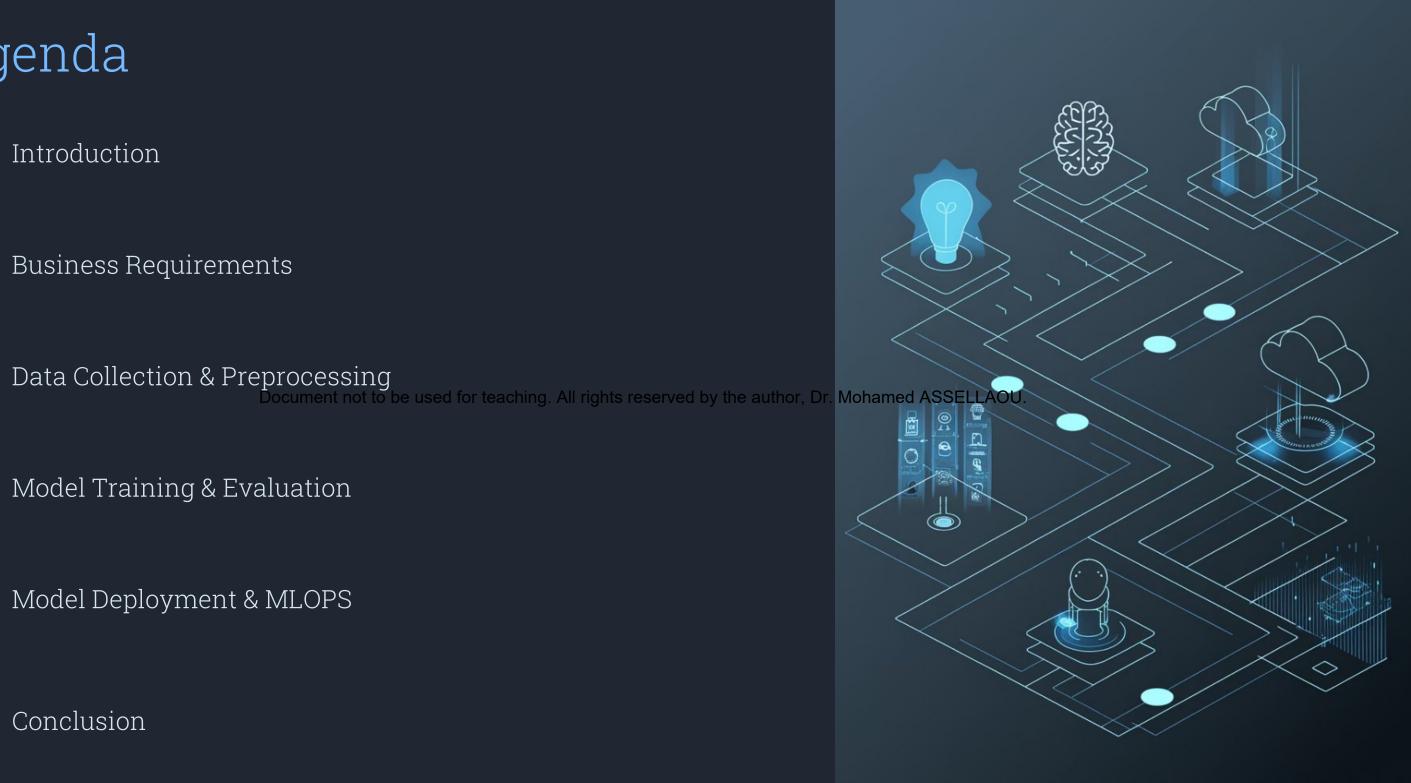
AI PROJECT WORKFLOW

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed Ass

Dr. Mohamed ASSELLAOU

Agenda


Introduction

Business Requirements

Model Training & Evaluation

Model Deployment & MLOPS

Conclusion

What is AI Project Workflow?

Definition

Artificial Intelligence (AI) simulates human intelligence in machines, enabling them to learn, reason, and solve problems.

AI Workflow

Al workflow is the structured path guiding Al projects, ensuring efficiency and effectiveness.

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.

Business Requirements Overview

Clear business requirements establish the project foundation.

They align AI solutions with strategic goals.

Identifying the Business Problem

Recognizing Challenges

Aligning AI

Identify problems impacting operations or strategy.

Match AI capabilities to solve those problems.

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.

Clearly define the problem to be solved with specific Identify stakeholders and their perspectives.

parameters.

Develop a clear problem statement with measurable

Understand the impact and importance of solving the problem. objectives.

Examples include automating customer support or forecasting demand.

Engaging Stakeholders and Team Alignment

Cross-Functional Roles

Collaboration fuels Al project success.

Communication

Regular updates ensure shared understanding and goals.

Strong team alignment accelerates impact.

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.

Defining Success Metrics & KPIs

ROI

Measure financial returns from Al initiatives.

Efficiency Gains

Track time or cost savings.

Customer Satisfaction

Assess improvements in user experience.

KPIs guide evaluation and continuous improvement.

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.

Introduction to Data Collection & Preprocessing

Quality data is critical for effective AI models.

Preprocessing ensures data usability and integrity.

Exploring Data Sources and Types

Internal Data

Document not to be used for teaching. All rights reservers terms patahamed ASSELLAOU.

Includes CRM, ERP, and company databases.

Open data sets and IoT sensors extend insights.

Structured data fits spreadsheets; unstructured includes text and images.

Ensuring Data Quality

Accuracy

Completeness

Correct and valid data

teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU, entries.

All required be present.

All required data points must

Consistency

Uniform formatting and standards.

Maintaining quality avoids model errors and bias.

Data Cleaning and Transformation Techniques

Cleaning

Document not to be used for teaching. All rights reserved and an administration of the description of the common o

Remove duplicates and fill missing data.

Normalize and encode for compatibility with models.

Effective cleansing prepares data for accurate modeling.

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.

Ethical Considerations in Data Handling

Data Privacy

Protect sensitive information with governance policies.

Responsible AI fosters trust and compliance.

Bias Mitigation

Ensure fairness by detecting and reducing biases.

Introduction to Model Training and Evaluation

Training is an iterative process of learning and improving.

Evaluation ensures models meet desired performance standards.

Training

Training

Training

Validation

Test set

The Model Training & Testing Process

Data Splitting

Training

Validation

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.

Separate data into subsets for training

validation and test sets.

Models learn patterns from training

data.

Adjust models based on validation

feedback.

Iterate to improve accuracy and generalization.

Test

Evaluate the model on unseen data after training.

Overview of Machine Learning Models

Classification

Predict discrete labels.

Regression

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU

Predict continuous outcomes.

Clustering

Group similar data points.

Neural Networks

Model complex patterns with deep learning.

Hyperparameter Tuning and Optimization

Tuning Techniques

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.

Apply grid and random search methods.

Optimization Goal

Find the best parameters for peak model results.

Fine-tuning boosts model accuracy significantly.

Evaluating Model Performance

Metrics Visual Tools

- Accuracy: Correctness of predictions be used for teaching. All rights reserved bROCaQuityes MTradetoffs between true and false positions
- Precision : Correctness of positive predictions
- Recall : Ability to identify all positive instances
- F1 Score : Balance between precision and recall

Select metrics aligned to business goals.

by the anti-fit of the fitting of th

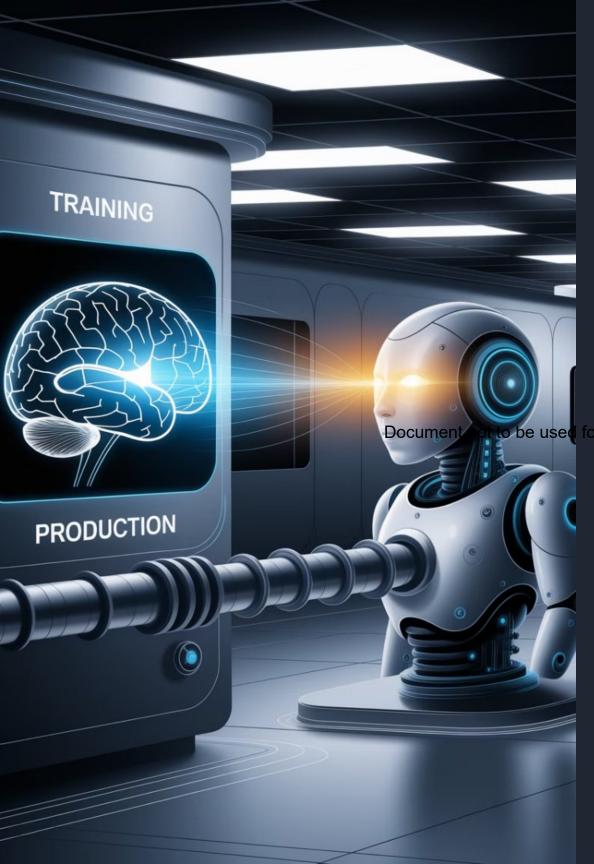
Confusion Matrices: Breakdown of true vs prediction outcomes

Challenges: Overfitting, Underfitting, and Cross-Validation

Overfitting

Underfitting cument not to be used for teaching. All rights reserved by the author, Dr.

Model too closely fits training data but poor generalization.


Model too simple, misses patterns.

Cross-Validation

Reliable method to assess model performance.

Balance bias and variance for robust AI.

Introduction to Model Deployment author, Dr. Mohamed ASSELLAOU.

Deployment moves models into real-world use.

Ensuring reliability and scalability is key.

Deployment Strategies and Environments

Staging Environment Document not to be used for teaching. All rights reserver oduction. Environment

Testing area before production.

Live environment for end users.

Techniques like blue-green minimize downtime and risk.

Containerization and Microservices

Containers

Document not to be used for teaching. All rights reserved by the author, Dr. Mo

Package apps with dependencies for consistency.

Microservices

Break application into manageable services.

These tools enhance scalability and manageability.

Monitoring and Post-Deployment Maintenance

Performance Monitoring teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.

Track model accuracy and latency continuously.

Maintenance

Update models to adapt to changing data.

Monitoring ensures sustained AI effectiveness.

Introduction to MLOps

MLOps bridges AI development and operations.

It enables continuous integration and delivery in AI projects.

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.

Components of an MLOps Pipeline

Automation

Streamlines workflows for efficiency.

Version Control

Keeps track of code and data changes.

CI/CD

Continuous integration and deployment pipelines.

Monitoring

Ensures model health and reliability.

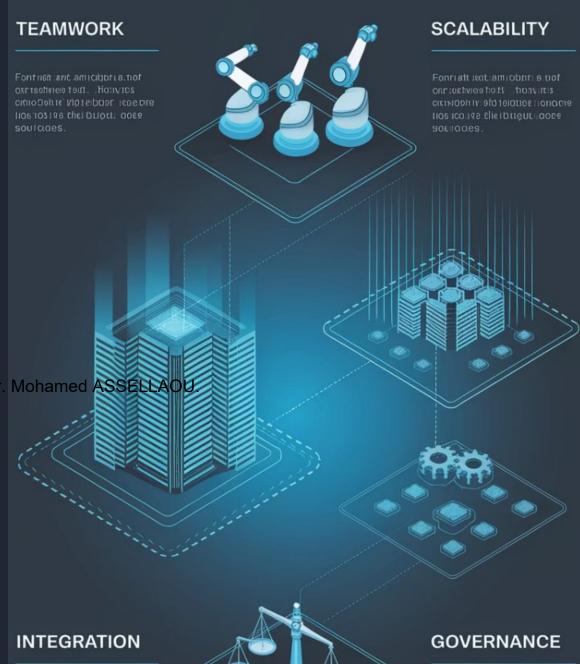
Best Practices and Common Challenges in MLOps

Team Collaboration

Foster clear communication and shared goals.

Scalability

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLA


Design pipelines that grow with demand.

Integration

Ensure smooth tool and data interoperability.

Governance

Maintain compliance and ethical standards.

Fontisis aut anticiber a not

ONF resticies butt ficialities

Font agit amichori's not

carregrand theresisas

Conclusion and Recap

This journey connects business needs to AI operations.

Clear strategy and collaboration unlock AI potential.

MLOps sustains continuous improvement and impact.

Thank you! Keep innovating and lifting others in tech.