PRI | i'g
e 5 Introduction to MLOpsS

Mohamed ASSELLAOU

AGENDA

MLOps Fundamentals 1
2 Key Concepts
Feature Pipelines 3

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAQOU.
4 Training Pipelines

Inference Pipelines)

6 Deployment & Monitoring

MLOps overview

The bridge Traditional failures

MLOps connects machine Most ML workflows fail in

learning development with production due to inconsistent

9 ()eczﬁ?'r;[le%p na(')lt %ybsc-:tﬁggg folrtteearc];ﬁng.e,al rights rese?v%\éltr)gl)mg]a%mgr’, mq\yl]otﬂ%!ned ASSELLAQOU.
models work in real-world processes, and poor monitoring.

environments.

DevOps evolution

MLOps builds on DevOps principles while addressing unique
challenges of machine learning systems.

What is MLOps?

Machine learning DevOps

Algorithms, models, and Automation, CI/CD, infrastructure

experimentation
Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.

Goal Data engineering

Reliable and efficient ML lifecycle Data pipelines, validation, storage
management

Why MLOps matters MO .'-: @il

o eyl

Failed projects

Percentage of ML projects that never reach production

Technical debt

ML systems accumulate technical debt faster than traditional software

40%

Performance drop

Average model accuracy decrease due to data drift in 3 months

The ML lifecycle challenge

System complexity Documef) agttache peed fetaasiing. All rights reseivéd by s Bython e Mighamed ASSELLAQGam coordination

ML systems have more Changing data creates new Models require continuous Cross-functional teams
moving parts than failure points. Models evaluation. Performance need shared workflows.
traditional software. They depend on specific data degrades over time without Data scientists and
combine code, data, and distributions. retraining. engineers must collaborate

models. effectively.

MLOps maturity levels

Level 3: Full Automation

Automated end-to-end MLOps lifecycle

Level 2: CI/CD Automation

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAQOU.
Automated testing and deployment

Level 1. ML Pipeline Automation

Automated training workflows

Level O: Manual Process

Manual experimentation and deployment

MLOps core principles

Version control

Track all components: code, data, models, and configurations. Nothing
exists without versioning.

Continuous integration

Automatically test ML components when chanqes occur. Validate code,
Document not to be used for teaching. All rights reserved by the author, Dr. Moha
data, and models. r

Continuous delivery

Automate model deployment to target environments. Ensure consistency
and reliability.

Continuous training

Automatically retrain models on new data. Monitor for drift and
performance degradation.

y

M asmsssee e =

L

s

EVO I u ti O n O.EOCMtLQJ to&%&&l@ﬁ] &ts reserved by the author, Dr. Mohamed ASSELLAOU.

Ad-hoc notebooks

Manual experimentation and deployment.
No standardization or reproducibility.
High technical debt.

Monolithic pipelines

Single end-to-end pipelines. Difficult to
maintain and test. Tight coupling between
components.

Modern FTI approach

Separate Feature/Training/Inference
pipelines. Clear interfaces. Independent
development and operation.

Monolith vs FTI pipelines

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.

Monolithic approach FTI approach

e Hard to debug e Easy to debug

e Difficult to test e Testable components
e Tight coupling e Loose coupling

e Team bottlenecks e Team autonomy

FTI Pipeline Architecture

O FTI Pipeline Architecture

Feature pipeline

Transforms raw data into ML-ready features and labels.
Outputs to feature store.

uent not to be used for teaching. All rights reserved.[b;[éhieneitﬁrarﬁ)lrpl\/le Iia;]meed ASSELLAQOU.

a Creates models using features and labels. Outputs registered
models.

Inference pipeline

4

Generates predictions using features and models. Outputs to
end users.

Feature pipeline

Data cleaning

Data ingestion Handle missing values and outliers

Collect data from sources

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.
Feature transformation

Create ML-ready features

Feature storage

Save to feature store Feature validation

Ensure quality and consistency

Feature engineering

Domain-driven creation Validation & testing
e Domain expertise e Check distributions
e Focus on business relevance e Verify transformations

Document not to be used for teaching. All rights reserv&d by & Sf86H TS Rohamed ASSELLAOU.

Feature selection Consistency
e Remove redundant features e Same logic in training and inference
e Measure feature importance e Version all transformations

e Document dependencies

Feature stores

What is a feature store? Key benefits

A feature store is a repositoryPRSPIEHEEM 47RY CEIRAR AL nahts reservgd by-ha Aot Rs Mg eSS RGNS

features. It connects feature engineering with model training
and serving.

e Consistency between training and serving

e [eature versioning and lineage tracking

Think of it as a database specifically designed for ML features. e Online and offline feature serving

e Reduced redundant computations

F e a't u re p i p @Llﬂie[t]wﬁ) bgeetvbauggitmged by the author, Dr. Mohamed ASSELLAQU.

|dentify data quality Issues Verify transformations

Use profiling tools to find outliers, missing values, and Check outputs after each transformation step. Visualize
distribution shifts in raw data. before and after distributions.

Proactive maintenance example (feature pipeline)

Define transformations
Design feature pipeline Document not to be used for teaching. All rights reserved, by theautbar, Pr--Mohamed AsSBELAQKS der time-series aggregations and

Create a feature pipeline for predicting equipment failures. Think about what data would help normalization for sensor data.
predict if a machine will break down.

o Sensor data (temperature, vibration)

o Maintenance logs and history

° Environmental conditions

Feature store implementation

Plan testing strate
9 9y Choose a feature store technology. Plan how features derived from sensor data and logs will

Outline how you would validate feature quality. Define expected distributions and quality be registered and accessed.
thresholds for metrics.

Training pipeline

Model registration

Register validated models with metadata. Prepare for deployment.

Model validation
Documgatadtie beepidhtjearaiag 1O iettroasrarreyiieauicl PoRRRBREASSELLAOU.

Model training

Train models with hyperparameter optimization. Log all experiments and metrics.

Feature retrieval

Get features from feature store. Create training datasets with proper splitting.

Model Experimentation

] R — Demaem S @ won -
Mesdel o] szl B o Mesdel B o
= i
o "
P pod el
Sr - e,
", - " f
i
oo - e - .
L
Mioged 8 Nodel B ot
0 - . - .
— |

Hypeeparsmatsr Opamirtion
(]

Resourca usa

L L]

Experiment tracking

Log all model runs with parameters, metrics, and artifacts. Tools like MLflow make results searchable.

======""" Hyperparameter tuning

S St? no?ttlc%ey use%rFor Ieac rt1|§rJn %\II righ

meters Use Bayesi no
s reserved by%h aut

r A"é@ﬁ_‘ﬁr& gpproaches.

{i tion
% ame

Model selection

Compare models based on performance metrics. Consider tradeoffs between accuracy and inference speed.

Model validation

Performance metrics

Measure accuracy, precision,
recall, and business-specific
KPIs. Set clear thresholds for
acceptance.

Fairness assessment

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.

Test for bias across protected
attributes. Ensure model
performs equally well across
all groups.

Data slicing

Evaluate performance
across different segments.
Identify underperforming
slices that need attention.

Validation tests

Run automated test suite on
models. Validate model
behavior on edge cases.

J J Training pipeline best practices

Deterministic training

Set random seeds for reproducibility. Document all randomness sources. Use same
environment for reruns.

Extensive logging

2 used for teaching. All ri h reserved bg the authar, Dr. Mo dh med ASSEI_L
Logg parameters, metrics, an art acts. lrac resource usage and training time.

Controlled data splitting

Use stratified sampling for imbalanced data. Ensure test data resembles production
data.

Configuration-driven

Drive experiments via configuration files. Avoid hardcoded parameters in code.

Inference pipeline overview

Feature retrieval Model loading

Get latest features from feature store Load appropriate model version
Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.

Post-processing Prediction generation

Format and enhance predictions Apply model to features

Practical exercice

Map your ML project

Take a current or planned ML project (e.g., phosphate production prediction). Map it to
the FTI architecture. Identify components for each pipeline.

Determine clear inputs and outputs for each pipeline. Document data formats and

schemas.

Assign responsibilities

Outline which team members would own each pipeline. Consider required skills and
knowledge.

Batch vs. Real-time Inference

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.

Characteristic

Timing

Volume

Latency

Infrastructure

Use Cases

Batch Inference

Periodic (hourly/daily)
Large data sets

Can be high

Optimized for throughput

Reports, daily recommendations

Real-time Inference

Immediate (milliseconds)

Single instances

Must be low

Optimized for latency

Fraud detection, search results

Model serving technologies

API frameworks Model servers Orchestration

e Flask: Simple Python welDocument not to be used fortestbng-At vigBe reserge dby ithE fauthard@liMohamedsASSEDICK@Y: Container packaging

framework e TorchServe: For PyTorch models e Kubernetes: Container orchestration
e FastAPI: Modern, high-performance e ONNX Runtime: For framework- e Vertex Ai Pipeline, Kubeflow
framework agnostic serving

e Django: Full-featured web
framework

Inference Performance Optimization

Model optimization Serving optimization Infrastructure optimization
e Quantization: Reduce precision e Batching: Process multiple e Horizontal scaling: Add more
¢ Pruning: Remove UNNEBEARAEM not to be used for trc.e%c Lfnegsgﬁl rights reserved by the author, Dr. Mohamed ASSSEeLﬁ_\,/AeOrL?

weights e (Caching: Store common e Vertical scaling: More powerful
e Distillation: Create smaller student predictions machines

models e Precomputing: Generate results e Hardware acceleration: GPUs,
e Graph optimization: Fuse ahead of time TPUs

operations e Asynchronous processing: Non- e Deployment location: Edge vs.

blocking APIs cloud

Deployment & Monitoring

Deployment Monitoring

Safely releasing models to production Tracking model health and performance

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.

Governance Retraining

Ensuring compliance and documentation Updating models with new data

Challenge

ed by the author, Dr. Mohamed ASSELLAOU.
Resource intensive

Complex traffic management

Blue/Green Deployment

Process Document not to be use'g%g\éQm}@Qﬁ&ts reserved by the author, Dr. Mohamed(;JgQLII!%geS
e Two parallel environments e Zero downtime e Double resources
e Blue: current version e Quick switch e Database migrations

e (Green: new version e Simple rollback

Canary deployment

Traffic shifting

Increase exposure on success

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.

Metrics monitoring

Watch for issues in real traffic

Gradual rollout

Start with small traffic percentage

Continuous integration/Continuous
delivery

Code changes

Developers commit code to version control. Changes trigger automated
workflows.

Automated testing

Document not to be used for teaching. All rights reserved by the author, Dr. Moha ec!' AS
Run unit, integration, and model quality tests. Verify all components work

together.

Package & release

Build deployment artifacts. Create containers or packages for each pipeline.

Pipeline

Deployment

Safely deploy to production using blue/green or canary strategies. Monitor
rollout health.

Model monitoring

Data drift detection Concept drift detection
Compare production data Detect changes in relationships
DEEURBAIGTIS te/BE [&8d TR Beaching. Al rights reserved by the author, Dr.AidHERRIA AdSBLUMRSy. and target.
data. Identify shifts in Often requires delayed ground
input patterns. truth.

Performance monitoring Alerting system

Track accuracy, precision, Set up automated alerts

for drift thresholds. Create
action plans for different

recall, and business
metrics. Alert when
performance degrades. alert types.

MLOps observabillity

Three pillars of observability ML-specific observability

Comprehensive visibility into ML systems requires three Machine learning systems need additional monitoring beyond
complementary approaches. Document not to be used for teaching. All rights reseniéd@blitiite el o6 b Mehamed ASSELLAOU.

e Logs: Detailed system events e [eature distributions
e Metrics: Quantitative performance data e Prediction distributions
e Traces: Request flows through system e Model performance metrics

e Data quality metrics

e Explanation metrics

Conclusion

Start Small

Begin with simple pipelines. Iterate and improve continuously.

Focus on Automation

| Eliminate manual steps gradually. Prioritize reproducibility in all processes
cume c 0 be used for teaching. All rlgtgﬁ@%aa@g%tﬁ? é%ﬂ}tﬁmﬂohamed ASSELLAOU.

Invest in Tooling

Choose appropriate tools for your scale. Build or buy suitable infrastructure .

Build Capabilities

Develop cross-functional MLOps skills. Remember that MLOps is about
people, process, and technology.

