
Introduction to MLOps
Mohamed ASSELLAOU

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.



AGENDA
MLOps Fundamentals

Key Concepts

Feature Pipelines

Training Pipelines

Inference Pipelines

Deployment & Monitoring

1

2

3

4

5

6

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.



MLOps overview
The bridge
MLOps connects machine
learning development with
operational systems. It ensures
models work in real-world
environments.

Traditional failures
Most ML workflows fail in
production due to inconsistent
environments, manual
processes, and poor monitoring.

DevOps evolution
MLOps builds on DevOps principles while addressing unique
challenges of machine learning systems.

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.



What is MLOps?
Machine learning

Algorithms, models, and
experimentation

DevOps
Automation, CI/CD, infrastructure

Data engineering
Data pipelines, validation, storage

Goal
Reliable and efficient ML lifecycle

management

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.



Why MLOps matters
90%

Failed projects
Percentage of ML projects that never reach production

10x
Technical debt

ML systems accumulate technical debt faster than traditional software

40%
Performance drop

Average model accuracy decrease due to data drift in 3 months

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.



The ML lifecycle challenge

System complexity
ML systems have more
moving parts than
traditional software. They
combine code, data, and
models.

Data dependencies
Changing data creates new
failure points. Models
depend on specific data
distributions.

Monitoring needs
Models require continuous
evaluation. Performance
degrades over time without
retraining.

Team coordination
Cross-functional teams
need shared workflows.
Data scientists and
engineers must collaborate
effectively.

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.



MLOps maturity levels
Level 3: Full Automation
Automated end-to-end MLOps lifecycle

Level 2: CI/CD Automation
Automated testing and deployment

Level 1: ML Pipeline Automation
Automated training workflows

Level 0: Manual Process
Manual experimentation and deployment

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.



MLOps core principles
Version control
Track all components: code, data, models, and configurations. Nothing
exists without versioning.

Continuous integration
Automatically test ML components when changes occur. Validate code,
data, and models.

Continuous delivery
Automate model deployment to target environments. Ensure consistency
and reliability.

Continuous training
Automatically retrain models on new data. Monitor for drift and
performance degradation.

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.



Evolution of ML Systems

Ad-hoc notebooks
Manual experimentation and deployment.
No standardization or reproducibility.
High technical debt.

Monolithic pipelines
Single end-to-end pipelines. Difficult to
maintain and test. Tight coupling between
components.

Modern FTI approach
Separate Feature/Training/Inference
pipelines. Clear interfaces. Independent
development and operation.

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.



Monolith vs FTI pipelines

Monolithic approach
· Hard to debug
· Difficult to test
· Tight coupling
· Team bottlenecks

FTI approach
· Easy to debug
· Testable components
· Loose coupling
· Team autonomy

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.



FTI Pipeline Architecture
Feature pipeline
Transforms raw data into ML-ready features and labels.
Outputs to feature store.

Training pipeline
Creates models using features and labels. Outputs registered
models.

Inference pipeline
Generates predictions using features and models. Outputs to
end users.

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.



Feature pipeline
Data ingestion

Collect data from sources

Data cleaning
Handle missing values and outliers

Feature transformation
Create ML-ready features

Feature validation
Ensure quality and consistency

Feature storage
Save to feature store

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.



Feature engineering

Domain-driven creation
· Domain expertise
· Focus on business relevance

Validation & testing
· Check distributions
· Verify transformations
· Test edge cases

Feature selection
· Remove redundant features
· Measure feature importance

Consistency
· Same logic in training and inference
· Version all transformations
· Document dependencies

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.



Feature stores
What is a feature store?
A feature store is a repository for managing and serving ML
features. It connects feature engineering with model training
and serving.
Think of it as a database specifically designed for ML features.

Key benefits
· Feature sharing across teams
· Consistency between training and serving
· Feature versioning and lineage tracking
· Online and offline feature serving
· Reduced redundant computations

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.



Feature pipeline debugging
Identify data quality Issues
Use profiling tools to find outliers, missing values, and
distribution shifts in raw data.

Verify transformations
Check outputs after each transformation step. Visualize
before and after distributions.

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.



Proactive maintenance example (feature pipeline)
Design feature pipeline
Create a feature pipeline for predicting equipment failures. Think about what data would help
predict if a machine will break down.
· Sensor data (temperature, vibration)
· Maintenance logs and history
· Environmental conditions

Define transformations
List specific feature transformations needed. Consider time-series aggregations and
normalization for sensor data.

Plan testing strategy
Outline how you would validate feature quality. Define expected distributions and quality
thresholds for metrics.

Feature store implementation
Choose a feature store technology. Plan how features derived from sensor data and logs will
be registered and accessed.

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.



Training pipeline

Get features from feature store. Create training datasets with proper splitting.
Feature retrieval

Model training
Train models with hyperparameter optimization. Log all experiments and metrics.

Model validation
Evaluate model quality. Test for performance, bias, and robustness.

Model registration
Register validated models with metadata. Prepare for deployment.

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.



Model Experimentation
Experiment tracking
Log all model runs with parameters, metrics, and artifacts. Tools like MLflow make results searchable.

Hyperparameter tuning
Systematically search for optimal parameters. Use Bayesian optimization or grid search approaches.

Model selection
Compare models based on performance metrics. Consider tradeoffs between accuracy and inference speed.

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.



Model validation

Performance metrics
Measure accuracy, precision,
recall, and business-specific
KPIs. Set clear thresholds for
acceptance.

Fairness assessment
Test for bias across protected
attributes. Ensure model
performs equally well across
all groups.

Data slicing
Evaluate performance
across different segments.
Identify underperforming
slices that need attention.

Validation tests
Run automated test suite on
models. Validate model
behavior on edge cases.

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.



Training pipeline best practices
Deterministic training
Set random seeds for reproducibility. Document all randomness sources. Use same
environment for reruns.

Extensive logging
Log all parameters, metrics, and artifacts. Track resource usage and training time.

Controlled data splitting
Use stratified sampling for imbalanced data. Ensure test data resembles production
data.

Configuration-driven
Drive experiments via configuration files. Avoid hardcoded parameters in code.

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.



Inference pipeline overview
Feature retrieval

Get latest features from feature store
Model loading
Load appropriate model version

Prediction generation
Apply model to features

Post-processing
Format and enhance predictions

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.



Practical exercice
Map your ML project
Take a current or planned ML project (e.g., phosphate production prediction). Map it to
the FTI architecture. Identify components for each pipeline.

Define interfaces
Determine clear inputs and outputs for each pipeline. Document data formats and
schemas.

Assign responsibilities
Outline which team members would own each pipeline. Consider required skills and
knowledge.

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.



Batch vs. Real-time Inference
Characteristic Batch Inference Real-time Inference
Timing Periodic (hourly/daily) Immediate (milliseconds)
Volume Large data sets Single instances
Latency Can be high Must be low
Infrastructure Optimized for throughput Optimized for latency
Use Cases Reports, daily recommendations Fraud detection, search results

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.



Model serving technologies
API frameworks
· Flask: Simple Python web

framework
· FastAPI: Modern, high-performance

framework
· Django: Full-featured web

framework

Model servers
· TensorFlow Serving: For TF models
· TorchServe: For PyTorch models
· ONNX Runtime: For framework-

agnostic serving

Orchestration
· Docker: Container packaging
· Kubernetes: Container orchestration
· Vertex Ai Pipeline, Kubeflow

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.



Inference Performance Optimization
Model optimization
· Quantization: Reduce precision
· Pruning: Remove unnecessary

weights
· Distillation: Create smaller student

models
· Graph optimization: Fuse

operations

Serving optimization
· Batching: Process multiple

requests
· Caching: Store common

predictions
· Precomputing: Generate results

ahead of time
· Asynchronous processing: Non-

blocking APIs

Infrastructure optimization
· Horizontal scaling: Add more

servers
· Vertical scaling: More powerful

machines
· Hardware acceleration: GPUs,

TPUs
· Deployment location: Edge vs.

cloud

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.



Deployment & Monitoring
Deployment

Safely releasing models to production
Monitoring
Tracking model health and performance

Retraining
Updating models with new data

Governance
Ensuring compliance and documentation

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.



Deployment strategies

Strategy Key Benefit Challenge
Blue/Green Instant rollback Resource intensive
Canary Limited exposure Complex traffic management

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.



Blue/Green Deployment
Process
· Two parallel environments
· Blue: current version
· Green: new version

Advantages
· Zero downtime
· Quick switch
· Simple rollback

Challenges
· Double resources
· Database migrations

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.



Canary deployment

Gradual rollout
Start with small traffic percentage

Metrics monitoring
Watch for issues in real traffic

Traffic shifting
Increase exposure on success

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.



Continuous integration/Continuous
delivery

Code changes
Developers commit code to version control. Changes trigger automated
workflows.

Automated testing
Run unit, integration, and model quality tests. Verify all components work
together.

Package & release
Build deployment artifacts. Create containers or packages for each pipeline.

Deployment
Safely deploy to production using blue/green or canary strategies. Monitor
rollout health.

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.



Model monitoring

Performance monitoring
Track accuracy, precision,
recall, and business
metrics. Alert when
performance degrades.

Data drift detection
Compare production data
distributions with training
data. Identify shifts in
input patterns.

Concept drift detection
Detect changes in relationships
between features and target.
Often requires delayed ground
truth.

Alerting system
Set up automated alerts
for drift thresholds. Create
action plans for different
alert types.

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.



MLOps observability
Three pillars of observability
Comprehensive visibility into ML systems requires three
complementary approaches.
· Logs: Detailed system events
· Metrics: Quantitative performance data
· Traces: Request flows through system

ML-specific observability
Machine learning systems need additional monitoring beyond
traditional software.
· Feature distributions
· Prediction distributions
· Model performance metrics
· Data quality metrics
· Explanation metrics

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.



Conclusion
Start Small
Begin with simple pipelines. Iterate and improve continuously.

Focus on Automation
Eliminate manual steps gradually. Prioritize reproducibility in all processes
and document everything.

Invest in Tooling
Choose appropriate tools for your scale. Build or buy suitable infrastructure .

Build Capabilities
Develop cross-functional MLOps skills. Remember that MLOps is about
people, process, and technology.

Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.




