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Manufacturing
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Data-rich environment Real-time opportunities Al-driven insights



Questions to ask:

« What are the business needs and requirements?
e Is machine learning the best solution for this problem?
 What are the inputs and outputs of the problem?
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How do | collect the data?

e Is the data ready?
e How do | transform and structure my data?
« How do | select features for the model?

 How do | measure the success of the solution?



Cross-Industry Standard Process for Data Mining (CRISP-DM) :

Business : ' Data
Understanding B Understanding
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‘ Preparatlon
Deployment %

Data Modelmg



ML project needs and requirements

Business objectives Technical constraints
e Production optimization e Available IT infrastructure
*  Operational cost reduction  Required computing capacity

e  Security improvement e Integration with exjsti stems
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e Maintenance prediction » Acceptable latency
Human resources Budget and timelines

» Available data science expertise e Initial investment

* Field team support  Expected ROI and horizon

e End-user training  Deployment phases

- Data governance



Is ML the best solution?

Criteria for favoring ML Alternatives to consider
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The problem involves complex patterns difficult to model manually . Simple and deterministic business rules

* Presence of large quantities of historical data that can be exploited . Classic statistical analyses

* Need for continuous adaptation to changing conditions . Physical or engineering models

* Business rules are too numerous or vague to be coded . Expert systems based on heuristics

* The solution must evolve and improve over time



MI problem inputs and outputs
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Typical inputs Transformation Expected outputs

* |ot sensors The ML model analyzes patterns, identifies * Equipment failure predictions
 Production history correlations, and learns complex « Trajectory optimization

. Equipment parameters relationships between input variables to « Safety alerts

generate accurate and actionable

 Weather conditions e Operational recommendations

e Maintenance data predictions.



Data location and accessibility

Operational databases Cloud storage and data lakes Field equipment and sensors
ERP, maintenance management Historical archives, unstructured data, Locally collected loT data, edge
systems, SQL/NOSQL databases application logs, distributed backups devices, embedded systems on

containing operation historP2H#sRbagL to be usegroaiRAchiag YEISIFRAAURY Ryigstliet teMohameepiefd s A5t surveillance cameras.

time telemetry.

Documents and files External sources

Excel reports, pdf documents, text logs, manual logbooks, Third-party data, regulations, industry benchmarks, public
surveys that require extraction and structuring. data.



Data collection strategies

Audit of existing sources 1

Map all data-producing systems: ERP, |0oT sensors, maintenance
databases. Identify redundancies.

2 Definition of collection pipeline

Design the ingestion architecture: collection frequency, communication

] protocols, error management, intermediate storage.
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Deploy new sensors if necessary, calibrate existing equipment, ensure
redundancy for critical measurements.

z Automation and ETL

Implement automated extract-transform-load processes with monitoring,

] ] logging, and alerts in case of failure.
Validation and governance S

Establish rules for validating incoming data, define data owners,
document collection processes.



Data readiness status

80% 60% 25%
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Preparation time Delayed projects Failure rate
On average, 80% of a ML project's time is More than 60% of ML projects experience Approximately 25% of ML initiatives fail due to
dedicated to data collection, cleaning, and delays due to insufficient quality of initial data incomplete or unusable data

preparation



Data readiness

Data completeness Consistency Format and accessibility
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Verify the absence of critical missing |dentify outliers, anomalies, sensor Evaluate format homogeneity, schema

values, sufficient temporal coverage, errors, duplicates, and inconsistencies documentation, access rights.

and representativeness of all between different data sources.

operational scenarios.



Data preparation and transformation

01 02 03
Cleaning and filtering Normalization and standardization Temporal aggregation
Remove outliers, correct sensor errors, interpolate Scale numerical variables, encode categorical Create relevant temporal windows, calculate moving
missing values, eliminate noise and gorypled 1313 pe (ISR RIMORI SR LRGSR ST SRR Wonaés RGSRIERRIY rends:
range differences.
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Enrichment and derivation Structuring and labeling
Generate calculated features (ratios, deltas), integrate contextual data. Create labels for supervised learning, document transformation traceability, and

organize train/validation/test datasets.



Data preparation and transformation

Recommended tools Document notto be USB@S@W@UIG‘ES reserved by the author, Dr. MohamedPEfall&oto avoid

*  Apache spark » Reproducible pipeline  Data leakage

« Python (pandas, polars, num - :
y (P P 22 « Data versioning e Information loss

« Automated quality tests e Introduced bias



Feature selection for the model

Statistical methods Algorithmic approaches Domain expertise

Correlation: eliminate redundar{aF4fispiast to be useg iiigren AN ESPARIIN IR RLpor. Dr. MohamgdiahPRiHo\dtb dge: critical variables identified

XGBoost
Variance: remove constant features Physical causality: mechanical relationships

L1 regularization: automatic selection

Statistical tests: ANOVA, chi-square _ _ _ _ Operational constraints: real-time
PCA: dimensionality reduction availability



Machine learning landscape

Supervised learning Unsupervised learning Reinforcement learning

Uses historical labeled data to learn Discovers hidden patterns in data Learns optimal actions through trial
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models and make predictions on new without Ia%elec?examp les. N etror 1h dynamic environments,

data. maximizing rewards over time.

» |deal for problems where outcomes « Perfect for exploratory analysis and » |deal for complex decision-making

are known. anomaly detection. problems.



Supervised learning
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Predictive maintenance: historical failure data predicts future equipment problems
Production planning: past performance data predicts future phosphate production

Site monitoring (safety and security): Detection of incidents



Unsupervised learning
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Clustering Anomaly detection Dimensionality reduction



Reinforcement learning

Agent and environment Learning policy

An agent performs actions that modify The agent aims to develop a policy
the state of the environment and (actions for each state) that maximizes
generate rewards. the sum of long-term rewards.

Applications

Autonomous machine trajectories: optimization of paths to reduce fuel
consumption, wear, and cycle times.

Dynamic inventory management

Operator training in simulated environments.



Classification

COMONMIN CRES

CAARE EATTH MICRES

§ CCWEDTHER

01

Binary classification

ed for teachingWAll pigisisiEseuatCbyries authyg) &l Wykeheo dSSEibA©BUCh as equipment failure
prediction, security risk detection, or quality assessment (pass/fail).

02

Multi-class classification

Multiple possible categories, such as equipment states (normal, warning, critical).



Regression

01

Linear regression

Simple relationships

* Predicting tonnage based on operating hours

 Energy consumption vs. production rate

Forecasting basic maintenance eRsi$ment not to be used for teaching. All rights reserved by the author, Dr. M

02
Non-linear regression
Complex relationships

* Equipment degradation curves

e  Multi-variable production optimization



Translating to ML problems

Classification problems Regression problems

Problem: equipment failure prediction Problem: phosphate production forecasting

Ml type: binary/multi-class classification Ml type: linear/non-linear regression
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Output: failure/no failure or specific failure type Output: continuous numeric values

Example: will this conveyor fail in the next 48 hours? Example: how many tons of phosphate will be processed tomorrow?



Classification performance metrics

Accuracy

Overall correctness of predictions across all classes. Simple but can be misleading with
imbalanced datasets.

Precision

| Among all positive predictions, how many were actually correct. Essential when false
« ;ed for teaching.iktigits rasereedtby. the author, Dr. Mohamed ASSELLAOU.

Recall

Among all actual positive cases, how many did we correctly identify. Crucial when
missing cases is dangerous.

F1-score

Harmonic mean of precision and recall. Balances both metrics for a comprehensive
evaluation.



Regression model
performance

Regression

Ana]ysis Mean absolute error (MAE): average absolute difference between predictions
and actual values
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Root mean squared error (RMSE): square root of the average squared errors,
penalizing larger errors

Mean absolute percentage error (MAPE): percentage-based error measure for
better interpretability

R-squared (R?): proportion of variance explained by the model




ROI
Measuring business impact

2 . 5 I\/I DocuInB% used for teaching. 3I58®% by the author, Dr. Mo

Annual cost Efficiency Return on
savings Improvement Investment



Model validation & continuous monitoring

Data collection Model training

Continuous collection of new training data 1 Regular retraining with updated datasets
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Drift detection 4 3 o
Performance monitoring

Identification of model performance degradation _ _
Real-time tracking of model accuracy



Overview of use cases
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1" of J

Predictive maintenance Production prediction Site surveillance



Translation of business use cases

Business problem Expected outcome Al approach
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1- Equipment failure and unplanned 25 to 30% reduction in downtime Predictive maintenance using sensor data
downtime
2- Inaccurate production forecasts Improved planning accuracy by 20% Regression models with historical data

3- Safety incidents Significant reduction in incidents Real-time detection models



Al workflow
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Data collection Data processing Model development
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Deployment Monitoring



Question 1: What are the business requirements?

Equipment availability Prediction window

Reduce unplanned downtime by 40%. Predict failures 7-14 days in advance.

System performance Operational coverage
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85%+ detection, <15% false alerts. Monitor 50+ conveyors across site.
Operational needs Environmental constraints
« SCADA integration « Dusty, corrosive environment
 Real-time SMS/email alerts  Extreme temperatures (-5°C to 45°C)
e Intuitive Ul for technicians * Intermittent network connectivity

e 20% maintenance cost reduction



Question 2: Is ML the best solution?

Approach
Reactive
Preventive
Expert Rules

Machine Learning

Why ML is optimal

Pros Cons
Low initial cost, simple Costly, unpredictable breakdowns
Easy planning, fixed schedule Over-maintenance, high costs
Simple to implement, explainable Rigid, lacks real complexity
Document not to be used for teaching. All rights reserved by the author, Dr. Mohamed ASSELLAOU.
Adaptive, detects hidden patterns Needs data & tech expertise
Complex interactions Continuous learning
Highly non-linear relationships are System improves automatically with
impossible to model manually with new operational data over time.

precision.

Verdict

X

X



Inputs & outputs

INPUTS

Real-time sensors

e Vibrations

 Temperature

* Rotation Speed

OUTPUTS

01

Binary classification

Failure within 7 days: Yes/No

02

Multi-class classification
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Contextual data

* Load transported
*  Operating hours
*  Maintenance history

. Weather conditions

Anticipated failure type: Motor, bearing, belt

03

Time regression

Remaining Useful Life (RUL) in hours

04

Risk score

0-100 evaluation for prioritizing maintenance



Data location and architecture

SCADA system CMMS (SAP PM) Additional 10T sensors
Real-time database: PostgreSQL/TimescaleDB. Computerized maintenance management Local edge storage with periodic cloud
Generates 500k+ data points/day. 3 years of system. 5 years of structured intervention synchronization.

history available. tickets and text notes.
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Data lake Data warehouse

Azure Data Lake / AWS S3 for all raw, Snowflake for structured data and complex
unstructured data. analytical queries.



Data collection strategy

Pipeline acquisition & labeling Key considerations
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Acquisition: 10T sensors SCADA, CMMS collect raw data. Minimal latency: local data buffering to manage connection losses.
Key data: machine ID, timestamp, temperature, vibration, load, max capacity, Validation & labeling: filtering of erroneous data and rapid identification of
pressure, operating hours. faults in real-time.
Validation: verification of data quality and schemas. Enhanced security: encryption to protect data integrity and confidentiality.
Labeling: each data point is labeled (0O = normal, 1 = fault) if critical thresholds Rich metadata: integration of machine identifiers and GPS locations for

are exceeded. analysis.



Data preparation and quality

Identified problems Applied solutions

Missing values: 15-20% (sensor failyfep e WAt WAGER) Al rights reserdIRHBUQRL BERL YRR RSN A5 florward fill for short gaps

Outliers and noise: 20% Anomaly detection: isolation forest to identify outliers

Class imbalance: 98% normal, 2% failure Resampling: SMOTE to balance classes (normal/failure)




Data transformation and structuring

1 Temporal aggregation

10 min windows: mean, standard deviation, min/max, median.

2 Derived features

Rate of change, ratios (temp/BaHMGB4IMAR RrorRGTIhiaa e RIS\ (TgDMFserved by the author, Dr. Mohais d ABBELL/ - -7--[.'

3 Contextual encoding

Variables: machine type, shift, weather, operator.

=] R —— R =i

4 Target labeling

Labeled failures: "critical" (<72h), "attention" (72-168h), "normal” (>168h).



Feature selection

Selection methodology

Reduction from 180 initial features to 20 to optimize models and improve interpretability.
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Applied techniques:
Correlation analysis: eliminate highly correlated features (>0.9).
Random forest importance: identify the most contributing features.

Domain expertise: validation by maintenance engineers.



Maintenance model architecture

01

Data pre-processing

Clean sensor data, manage missing values, and normalize measurements for different equipment
types and operating conditions.

02
Feature engineering
Extract moving B0SPAYY PAIRRR AR FAANAA ) A Ao AL Sy ANG 2l MehaMmgd ASSELLACU.

from raw sensor streams.

03
Anomaly detection

Identify unusual equipment behaviors using unsupervised learning techniques.

04

Classification model

Train supervised models to classify equipment status as healthy, or requiring immediate
attention, based on historical labeled data.



Measuring ML solution success

ML metrics Business KPlIs Continuous monitoring
L O - -gw ° 1 H
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e precision = 70% ]  A/B testing
Maintenance cost : -30% goal
e AUC-ROC >0.90  Feedback loop

MTBF : +40%

ROIl : 18 months



Maintenance: from theory to practice

Approach summary Next steps

Business understanding 1. PoC on 5 pilot machines

Align needs with objectives (ROI).

2. Validation (3 months of operation)
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Data quality 3. Phased deployment on 50 pieces of equipment

Robust pipelines, relevant features. 4. CMMS and ERP integration

Continuous KPI monitoring (tech & business).



Key principles of responsible Al in Manufacturing

01 - Ethical foundation 02 - Data security
Establish clear ethical guidelines and accountability frameworks for the development and Implement robust data governance, protection protocols, and privacy safeguards to maintain
deployment of Al across all mining operations. stakeholder trust and regulatory compliance.
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03 - Bias prevention ransparency

Actively detect, correct, and prevent algorithmic biases through diversified datasets, regular Ensure Al systems are explainable, interpretable, and provide clear justification for
audits, and inclusive development practices. recommendations and decisions.

05 - Human-centered design 06 - Continuous improvement

Develop Al solutions that augment human capabilities while preserving meaningful human Regularly monitor Al performance and implement feedback mechanisms for ongoing

oversight and decision-making authority. optimization and ethical compliance.



The power of explainable Al

Explainable output

Clear reasoning and confidence levels
help engineers understand and trust Al
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Data input Al processing
Raw data from mining equipment Machine learning algorithms analyze
sensors, geological surveys, and patterns and generate predictions or

operational metrics recommendations

recommendations



Défis courants

Unclear objectives Insufficient data quality

Projects often start without specific and measurable objectives. Inconsistent data collection, missing values, and unreliable sensors from

'Tmproving efficiency' is too vague! phosphate extraction or processing equipment create models that fail in
production!

— 'Reduce unplanned downtime in phosphate processing by 25%'
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Unrealistic expectations Insufficient domain knowledge

Expecting 100% accuracy or immediate ROI in predicting phosphate Data scientists and ML engineers without expertise in phosphate
equipment failures leads to disappointment! extraction may miss critical operational nuances!

-Setting realistic expectations and iterative improvement goals ensures -Close collaboration between technical and operational teams is

sustainable progress." essential."



Translating Manufacturing
problems into Al. models........
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